Lecture 16: Continuity Theorem for Characteristic Functions

STAT205 Lecturer: Jim Pitman Scribe: Cristine Pinto <cristine@econ.berkeley.edu>

References: [1], section 2.3.

16.1 Review of the Inversion Formula

Recall that if X is a random variable, it's characteristic function is

$$\varphi_X(t) = \mathbb{E}\left[e^{itX}\right].$$

In the last lecture, we proved the Uniqueness Theorem for characteristic functions. We also learned the *inversion formula*: if $\int |\varphi_X(t)| < \infty$, then X has a bounded continuous density

 $f_X(x) = \frac{1}{2\pi} \int e^{-itx} \varphi_X(t) dt.$

16.2 Continuity Theorem for Characteristic Functions

Suppose we have a sequence of distributions on the line (\mathbb{P}_n) with characteristic functions

$$\varphi_n(t) = \int e^{itx} \cdot \mathbb{P}_n(dx) = \mathbb{E}\left[e^{itX_n}\right]$$

for $X_n \sim \mathbb{P}_n$. We want to be able to tell that \mathbb{P}_n converges in distribution to some limit on \mathbb{R} by looking at $\varphi_X(t)$. Recall that if $\mathbb{P}_n \stackrel{d}{\longrightarrow} \mathbb{P}$ then

$$\int f d\mathbb{P}_n \longrightarrow \int f d\mathbb{P}$$
 for every bounded continuous function f .

So in particular for $f(x) = e^{itx}$, we get $\varphi_n(t) \longrightarrow \varphi(t)$ as $n \longrightarrow \infty$ where $\varphi(t) = \int e^{itx} \mathbb{P}(dx)$, the characteristic function of \mathbb{P} .

Consider the converse. Suppose we have a sequence \mathbb{P}_n with $\varphi_n(t)$ and $\varphi_n(t) \longrightarrow \varphi(t)$ as $n \longrightarrow \infty$ for some function $\varphi(t)$. Without imposing further assumptions, we cannot conclude that $\mathbb{P}_n \stackrel{d}{\longrightarrow} \mathbb{P}$ where \mathbb{P} has a continuous characteristic function $\varphi(t)$.

Example 16.1 Let $\mathbb{P}_n = N(0,n)$, so that $\varphi_n(t) = e^{-\frac{1}{2}nt^2}$, $t \in \mathbb{R}$. Notice that $\varphi_n(t) \longrightarrow \mathbf{1}(t=0)$, but $\mathbb{P}_n \xrightarrow{v} \frac{1}{2}\delta_{-\infty} + \frac{1}{2}\delta_{+\infty}.$

Recall the idea of *tightness*: (\mathbb{P}_n) is tight if:

$$\lim_{x \to \infty} \sup_{n} \mathbb{P}_n(-x, x)^c = 0.$$

We present the first (easy) version of the continuity theorem for characteristic functions.

Theorem 16.2 Let \mathbb{P}_n be probability measures on \mathbb{R} with c.f. φ_n . If:

- 1. $\lim_{n\to\infty} \varphi_n(t) = \varphi(t)$ exists for every $t \in \mathbb{R}$; and
- 2. \mathbb{P}_n is tight,

then $\mathbb{P}_n \longrightarrow \mathbb{P}$ where \mathbb{P} is a probability measure on \mathbb{R} with c.f. φ .

Proof: By Helly's selection theorem, to prove that there exists a \mathbb{P} such that $\mathbb{P}_n \longrightarrow \mathbb{P}$, it is enough to show that there exists a \mathbb{P} such that every subsequence of (\mathbb{P}_n) has a further subsequence which converges to \mathbb{P} .

To find a suitable \mathbb{P} , recall the general theorem: Let \mathcal{C} be a collection of bounded continuous functions which is determining. If:

- 1. $\lim_{n\to\infty} \int f d\mathbb{P}_n$ exists for all $f \in \mathcal{C}$; and
- 2. (\mathbb{P}_n) is tight,

then:

$$\mathbb{P}_n \xrightarrow{d} \mathbb{P} \text{ where } \int f d\mathbb{P} = \lim_{n \to \infty} \int f d\mathbb{P}_n, \ \forall f \in \mathcal{C}$$

Apply this general theorem to

$$C = \{ f \text{ of the form } f(x) = \sin(tx), t \in \mathbb{R} \text{ or } f(x) = \cos(tx), t \in \mathbb{R} \}.$$

 \mathcal{C} is determining by the uniqueness theorem for c.f.'s.

This form of the continuity theorem is adequate for most applications, such as the CLT. Usually in the CLT we try to show:

$$Z_n = \frac{S_n}{\sqrt{\mathbb{E}(S_n^2)}} \stackrel{d}{\longrightarrow} N(0,1)$$

In this case, \mathbb{P}_n is the distribution of Z_n with $\mathbb{E}(Z_n) = 0$. Clearly, \mathbb{P}_n is tight:

$$\mathbb{P}_n(-x,x)^c = \mathbb{P}(|Z_n| > x) \le \frac{\mathbb{E}(Z_n^2)}{x^2} = \frac{1}{x^2},$$

which decreases to 0 as $x \uparrow \infty$.

So, if we continue to assume condition 1 of theorem 16.2, condition 2 implies that there exists some \mathbb{P} with c.f. φ such that:

- (2a) φ is the characteristic function of *some* distribution. This also implies
- (2b) φ is continuous as a function of t. This, in turn, implies
- (2c) $t \longrightarrow \varphi(t)$ is continuous at t = 0.

Paul Lévy found that with condition 1, (2b) is *equivalent* to condition 2 of theorem 16.2.

Theorem 16.3 (Lévy Continuity Theorem for c.f.'s): Given \mathbb{P}_n with c.f. φ_n , if:

- 1. $\lim_{n\to\infty}\varphi_n(t)=\varphi(t)$ exists for all $t\in\mathbb{R}$; and
- 2. $t \longrightarrow \varphi(t)$ is continuous at t = 0,

then

$$\mathbb{P}_n \stackrel{d}{\longrightarrow} \mathbb{P} \text{ with } \int e^{itx} \mathbb{P}(dx) = \varphi(t).$$

Proof: In the proof, we just need to show that continuity of φ at 0 implies (\mathbb{P}_n) is tight. For that, it's most convincing to use a genuine bound ([1], p. 98):

$$\frac{1}{u} \cdot \int_{u}^{-u} [1 - \varphi_n(t)] dt \ge \mathbb{P}_n \left(\frac{-2}{u}, \frac{2}{u} \right)^c$$

Recall that $\varphi_n(t) \longrightarrow \varphi(t)$ as $n \longrightarrow \infty$ and $\varphi_n(t)$ is continuous at t = 0, $\varphi(0) = 1$. As $n \longrightarrow \infty$, then,

$$\frac{1}{u} \int_{-u}^{u} [1 - \varphi_n(t)] dt \longrightarrow \frac{1}{u} \int_{-u}^{u} [1 - \varphi(t)] dt,$$

and as $u \longrightarrow 0$,

$$\frac{1}{u} \int_{-u}^{u} [1 - \varphi(t)] dt \longrightarrow 0.$$

Fix $\epsilon > 0$ and choose u small enough so that $\frac{1}{u} \int_{-u}^{u} [1 - \varphi(t)] dt < \epsilon$. Choose N large enough that:

$$\frac{1}{u} \int_{-u}^{u} |1 - \varphi_n(t)| dt < 2\epsilon \text{ for } n \ge N.$$

Now we have

$$\mathbb{P}_n\left(-\frac{2}{u}, \frac{2}{u}\right)^c \le 2\epsilon \text{ for all } n \ge N,$$

and hence $\lim_{x\to\infty} \sup_n \mathbb{P}_n(-x,x)^c = 0$ as desired.

16.3 Exercises

Exercise 16.4 (Extra credit problem) Suppose a sequence (\mathbb{P}_n) of probability measure on \mathbb{R} such that $\lim_{n\to\infty} \int f d\mathbb{P}_n$ exists and $\in \mathbb{R}$ for every bounded continuous f. Then (you check): there exists a unique probability measure \mathbb{P} such that $\mathbb{P}_n \stackrel{d}{\longrightarrow} \mathbb{P}$. Consequently:

$$\int f d\mathbb{P} = \lim_{n \to \infty} \int f d\mathbb{P}_n.$$

Exercise 16.5 What happens if we replace \mathbb{R} in exercise 16.4 by \mathbb{R}^n or a generic metric space?

Example 16.6 (Related to the exercises above) Consider:

$$C = \{f : f \text{ is bounded, continuous, and has a compact support}\}\$$

(Note that if f has compact support, then f(x) = 0 for |x| > B for some $B \ge 0$.) Check that C is a determining class.

Consider

$$C_0 = \{f : f(0) = 0 \text{ and } f \text{ is continuous with compact support}\};$$

 C_0 is also a determining class.

Let

$$\mathbb{P}_n = \left\{ \begin{array}{ll} \delta_n & \text{if } n \text{ is even} \\ \delta_0 & \text{if } n \text{ is odd} \end{array} \right.$$

In this case, $\int f d\mathbb{P}_n \longrightarrow \int f d\delta_0$ for all $f \in \mathcal{C}$, but $\mathbb{P}_n \nrightarrow \mathbb{P}_0$.

The moral of this example is that to prove that $\mathbb{P}_n \stackrel{d}{\longrightarrow} \mathbb{P}$ for some probability \mathbb{P} on \mathbb{R} , it is not enough to just show that $\int f d\mathbb{P}_n \longrightarrow \int f d\mathbb{P}$ for all f in a determining class.

References

[1] Richard Durrett. Probability: theory and examples, 3rd edition. Thomson Brooks/Cole, 2005.