STAT205 Lecturer: Jim Pitman Scribe: Cristine Pinto <cristine@econ.berkeley.edu>

Lecture 16 : Continuity Theorem for Characteristic F

unctions

References: [1], section 2.3.

16.1 Review of the Inversion Formula

Recall that if X is a random variable, it’s characteristic function is
ox(t) = E [¢*X] |

In the last lecture, we proved the Uniqueness Theorem for characteristic functions.
We also learned the inversion formula: if [|ox(t)] < oo, then X has a bounded

continuous density
1

" o7

fx(z) /e_mgpx(t)dt.
16.2 Continuity Theorem for Characteristic Func-
tions

Suppose we have a sequence of distributions on the line (P,) with characteristic
functions

on(t) = /em ‘P, (dz) = E [¢"¥"]

for X,, ~ P,. We want to be able to tell that P,, converges in distribution to some
limit on R by looking at ¢y (t). Recall that if P, —— P then

/ fdP, — / fdP for every bounded continuous function f.
So in particular for f(z) = €"®, we get p,(t) — ©(t) as n — oo where ¢(t) =
[ €"*P(dx), the characteristic function of P.

Consider the converse. Suppose we have a sequence P, with ¢, (¢) and ¢, (t) — ©(t)
as n — oo for some function ¢(t). Without imposing further assumptions, we cannot

conclude that P,, —— P where P has a continuous characteristic function ¢(t).
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Example 16.1 Let P, = N(0,n), so that ¢,(t) = e 2", t € R. Notice that
on(t) — 1(t =0), but

1 1
P, " 26 4 =0 .
gl T 0

Recall the idea of tightness: (P,) is tight if:

lim sup P, (—x, x)¢ = 0.

T—00 p

We present the first (easy) version of the continuity theorem for characteristic func-
tions.

Theorem 16.2 Let P, be probability measures on R with c.f. p,. If:

1. limy, o0 ©n(t) = ©(t) exists for every t € R; and

2. P, is tight,
then P, — P where P is a probability measure on R with c.f. ¢.

Proof: By Helly’s selection theorem, to prove that there exists a P such that P,, —
PP, it is enough to show that there exists a [P such that every subsequence of (P,) has
a further subsequence which converges to P.

To find a suitable PP, recall the general theorem: Let C be a collection of bounded
continuous functions which is determining. If:

1. lim, o [ fdP, exists for all f € C; and
2. (P,) is tight,

then:
P, — P where /deP’ = lim [ fdP,, VfeC

Apply this general theorem to
C = {f of the form f(z) =sin(tz), t € R or f(x) = cos(tx), t € R}.

C is determining by the uniqueness theorem for c.f.’s. [ |

This form of the continuity theorem is adequate for most applications, such as the
CLT. Usually in the CLT we try to show:
Sy,

Ty = ——— %5 N(0,1)
E(57)
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In this case, P, is the distribution of Z,, with E(Z,) = 0. Clearly, P, is tight:

Bo(—,2)° = B(Z,] > ) < o) _ L

)
2 2

which decreases to 0 as x T oo.

So, if we continue to assume condition 1 of theorem 16.2, condition 2 implies that
there exists some P with c.f. ¢ such that:

(2a) ¢ is the characteristic function of some distribution. This also implies
(2b) ¢ is continuous as a function of ¢. This, in turn, implies

(2¢) t — (t) is continuous at t = 0.

Paul Lévy found that with condition 1, (2b) is equivalent to condition 2 of theorem
16.2.

Theorem 16.3 (Lévy Continuity Theorem for c.f.’s): Given P, with c.f. o, if:

1. limy_—ootpn(t) = @(t) exists for allt € R; and

2. t — () is continuous at t = 0,

then
P, = P with / e P(dx) = o(t).

Proof: In the proof, we just need to show that continuity of ¢ at 0 implies (P,) is
tight. For that, it’s most convincing to use a genuine bound ([1], p. 98):

% . /u_uu — on(t)]dt > P, (%2 3)

Recall that ¢, (t) — ¢(t) as n — oo and ¢, (t) is continuous at t = 0, ¢(0) = 1.
As n — o0, then,

s [ u-eaoia— o[- el

—Uu
and as u — 0,

%/ 1 — p(#)]dt — 0.

—Uu
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Fix € > 0 and choose u small enough so that + [* [1 — ¢(t)]dt < e. Choose N large

enough that:

1 u
—/ 11— ()|t < 2€ forn > N.
u U

Now we have

2 2\°
P, (——,—) < 2¢ for all n > N,
uu

and hence lim, . sup,, P,(—z,x)° = 0 as desired. u

16.3 Exercises

Exercise 16.4 (Extra credit problem) Suppose a sequence (P,,) of probability mea-
sure on R such that lim,,_. [ fdP, exists and € R for every bounded continuous f.

Then (you check): there exists a unique probability measure P such that P, -4 P.
Consequently:

Exercise 16.5 What happens if we replace R in exercise 16.4 by R™ or a generic
metric space?

Example 16.6 (Related to the exercises above) Consider:

C ={f: [ is bounded, continuous, and has a compact support}

(Note that if f has compact support, then f(x) = 0 for |x| > B for some B > 0.)
Check that C is a determining class.

Consider
Co={f:f(0)=0 and f is continuous with compact support} ;

Co 18 also a determining class.

Let
P — 0, if m is even
" by ifmois odd

In this case, [ fdP, — [ fdéy for all f € C, but P, » P.

The moral of this example is that to prove that P, —— P for some probability P on R,
it is not enough to just show that [ fdP, — [ fdP for all f in a determining class.
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