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16.1 Review of the Inversion Formula

Recall that if X is a random variable, it’s characteristic function is

ϕX(t) = E
[

eitX
]

.

In the last lecture, we proved the Uniqueness Theorem for characteristic functions.
We also learned the inversion formula: if

∫

|ϕX(t)| < ∞, then X has a bounded
continuous density

fX(x) =
1

2π

∫

e−itxϕX(t)dt.

16.2 Continuity Theorem for Characteristic Func-

tions

Suppose we have a sequence of distributions on the line (Pn) with characteristic
functions

ϕn(t) =

∫

eitx · Pn(dx) = E
[

eitXn

]

for Xn ∼ Pn. We want to be able to tell that Pn converges in distribution to some

limit on R by looking at ϕX(t). Recall that if Pn

d

−→ P then

∫

fdPn −→

∫

fdP for every bounded continuous function f.

So in particular for f(x) = eitx, we get ϕn(t) −→ ϕ(t) as n −→ ∞ where ϕ(t) =
∫

eitx
P(dx), the characteristic function of P.

Consider the converse. Suppose we have a sequence Pn with ϕn(t) and ϕn(t) −→ ϕ(t)
as n −→ ∞ for some function ϕ(t). Without imposing further assumptions, we cannot

conclude that Pn

d

−→ P where P has a continuous characteristic function ϕ(t).
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Example 16.1 Let Pn = N(0, n), so that ϕn(t) = e−
1

2
nt2 , t ∈ R. Notice that

ϕn(t) −→ 1(t = 0), but

Pn

v

−→
1

2
δ
−∞

+
1

2
δ+∞

.

Recall the idea of tightness: (Pn) is tight if:

lim
x→∞

sup
n

Pn(−x, x)c = 0.

We present the first (easy) version of the continuity theorem for characteristic func-
tions.

Theorem 16.2 Let Pn be probability measures on R with c.f. ϕn. If:

1. limn→∞
ϕn(t) = ϕ(t) exists for every t ∈ R; and

2. Pn is tight,

then Pn −→ P where P is a probability measure on R with c.f. ϕ.

Proof: By Helly’s selection theorem, to prove that there exists a P such that Pn −→
P, it is enough to show that there exists a P such that every subsequence of (Pn) has
a further subsequence which converges to P.

To find a suitable P, recall the general theorem: Let C be a collection of bounded
continuous functions which is determining. If:

1. limn→∞

∫

fdPn exists for all f ∈ C; and

2. (Pn) is tight,

then:

Pn

d

−→ P where

∫

fdP = lim
n→∞

∫

fdPn, ∀f ∈ C

Apply this general theorem to

C = {f of the form f(x) = sin(tx), t ∈ R or f(x) = cos(tx), t ∈ R} .

C is determining by the uniqueness theorem for c.f.’s.

This form of the continuity theorem is adequate for most applications, such as the
CLT. Usually in the CLT we try to show:

Zn =
Sn

√

E(S2
n
)

d

−→ N(0, 1)
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In this case, Pn is the distribution of Zn with E(Zn) = 0. Clearly, Pn is tight:

Pn(−x, x)c = P(|Zn| > x) ≤
E(Z2

n
)

x2
=

1

x2
,

which decreases to 0 as x ↑ ∞.

So, if we continue to assume condition 1 of theorem 16.2, condition 2 implies that
there exists some P with c.f. ϕ such that:

(2a) ϕ is the characteristic function of some distribution. This also implies

(2b) ϕ is continuous as a function of t. This, in turn, implies

(2c) t −→ ϕ(t) is continuous at t = 0.

Paul Lévy found that with condition 1, (2b) is equivalent to condition 2 of theorem
16.2.

Theorem 16.3 (Lévy Continuity Theorem for c.f.’s): Given Pn with c.f. ϕn, if:

1. limn→∞
ϕn(t) = ϕ(t) exists for all t ∈ R; and

2. t −→ ϕ(t) is continuous at t = 0,

then

Pn

d

−→ P with

∫

eitx
P(dx) = ϕ(t).

Proof: In the proof, we just need to show that continuity of ϕ at 0 implies (Pn) is
tight. For that, it’s most convincing to use a genuine bound ([1], p. 98):

1

u
·

∫

−u

u

[1 − ϕn(t)]dt ≥ Pn

(

−2

u
,
2

u

)c

Recall that ϕn(t) −→ ϕ(t) as n −→ ∞ and ϕn(t) is continuous at t = 0, ϕ(0) = 1.
As n −→ ∞, then,

1

u

∫

u

−u

[1 − ϕn(t)]dt −→
1

u

∫

u

−u

[1 − ϕ(t)]dt,

and as u −→ 0,
1

u

∫

u

−u

[1 − ϕ(t)]dt −→ 0.
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Fix ε > 0 and choose u small enough so that 1

u

∫

u

−u
[1 − ϕ(t)]dt < ε. Choose N large

enough that:
1

u

∫

u

−u

|1 − ϕn(t)|dt < 2ε for n ≥ N.

Now we have

Pn

(

−
2

u
,
2

u

)c

≤ 2ε for all n ≥ N,

and hence limx→∞
sup

n
Pn(−x, x)c = 0 as desired.

16.3 Exercises

Exercise 16.4 (Extra credit problem) Suppose a sequence (Pn) of probability mea-
sure on R such that limn→∞

∫

fdPn exists and ∈ R for every bounded continuous f .

Then (you check): there exists a unique probability measure P such that Pn

d

−→ P.
Consequently:

∫

fdP = lim
n→∞

∫

fdPn.

Exercise 16.5 What happens if we replace R in exercise 16.4 by R
n or a generic

metric space?

Example 16.6 (Related to the exercises above) Consider:

C = {f : f is bounded, continuous, and has a compact support}

(Note that if f has compact support, then f(x) = 0 for |x| > B for some B ≥ 0.)
Check that C is a determining class.

Consider

C0 = {f : f(0) = 0 and f is continuous with compact support} ;

C0 is also a determining class.

Let

Pn =

{

δn if n is even
δ0 if n is odd

In this case,
∫

fdPn −→
∫

fdδ0 for all f ∈ C, but Pn 9 P0.

The moral of this example is that to prove that Pn

d

−→ P for some probability P on R,
it is not enough to just show that

∫

fdPn −→
∫

fdP for all f in a determining class.
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